46 research outputs found

    Synthesis, characterization and photodynamic therapy properties of an octa-4-tert-butylphenoxy-substituted phosphorus (V) triazatetrabenzcorrole

    Get PDF
    A novel octa-4-tert-butylphenoxy-substituted phosphorus(V) triazatetrabenzcorrole (PVTBC), has been synthesized and characterized by MALDI-TOF MS and NMR, FT-IR and MCD spectroscopy. The fluorescence emission spectrum was used to determine the fluorescence quantum yield and the quantum yield for singlet oxygen generation was calculated by using 1,3-diphenylisobenzofuran as a scavenger. The photocytoxicity against U87MG cells was measured. The results indicated that PVTBC is potentially useful as an NIR region photosensitizer for photodynamic therapy (PDT)

    Searching for the nano-Hertz stochastic gravitational wave background with the Chinese Pulsar Timing Array Data Release I

    Full text link
    Observing and timing a group of millisecond pulsars (MSPs) with high rotational stability enables the direct detection of gravitational waves (GWs). The GW signals can be identified from the spatial correlations encoded in the times-of-arrival of widely spaced pulsar-pairs. The Chinese Pulsar Timing Array (CPTA) is a collaboration aiming at the direct GW detection with observations carried out using Chinese radio telescopes. This short article serves as a `table of contents' for a forthcoming series of papers related to the CPTA Data Release 1 (CPTA DR1) which uses observations from the Five-hundred-meter Aperture Spherical radio Telescope (FAST). Here, after summarizing the time span and accuracy of CPTA DR1, we report the key results of our statistical inference finding a correlated signal with amplitude \log A_{\rm c}= -14.4 \,^{+1.0}_{-2.8} for spectral index in the range of α[1.8,1.5]\alpha\in [-1.8, 1.5] assuming a GW background (GWB) induced quadrupolar correlation. The search for the Hellings-Downs (HD) correlation curve is also presented, where some evidence for the HD correlation has been found that a 4.6-σ\sigma statistical significance is achieved using the discrete frequency method around the frequency of 14 nHz. We expect that the future International Pulsar Timing Array data analysis and the next CPTA data release will be more sensitive to the nHz GWB, which could verify the current results.Comment: 18 pages, 6 figures, submitted to "Research in astronomy and astrophysics" 22nd March 202

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    clustering with feature order preferences

    No full text
    Vietnamese Acad Sci & Technol, Minist Sci & Technol Vietnam, Hanoi Univ Technol, Vietnam Natl UnivAir Force Off Sci Res, Asian Off Aerosp Res & DevWe propose a clustering algorithm that effectively utilizes feature order preferences, which have the form that feature 8 is more important than feature t. Our clustering formulation aims to incorporate feature order preferences into prototyp

    Online State of Health Estimation for Lithium-Ion Batteries Based on Support Vector Machine

    No full text
    In this paper, a novel state of health (SOH) estimation method based on partial charge voltage and current data is proposed. The extraction of feature variables, which are energy signal, the Ah-throughput, and the charge duration, is discussed and analyzed. The support vector machine (SVM) with radial basis function (RBF) as kernel function is applied for the SOH estimation. The predictive performance of the SOH by the SVM are performed with full and partial charging data. Experiment results show that the addressed approach enables estimating the SOH accurately for practical application

    Sensitivity of EPA of Ground Motion to Soil Slope Dynamic Response

    No full text
    To study the influence law of effective peak acceleration (EPA) on the seismic response of soil slope, the finite element method was used to simulate the slope response under earthquake action with 100 actual seismic records were selected, the influence law of the EPA under four different definitions commonly used in domestic and foreign codes on the soil slope seismic response was discussed, and which was compared with the influence law of the peak acceleration (PGA). The results showed that the deformation and the maximum principal stress of soil slope both increased with the EPA and PGA, which had an obvious linear relationship, but the correlation degree were different with the parameters of PGA and EPA by the different definitions. EPA1 by the first definition has the highest correlation with the soil slope seismic response, followed by PGA, which was close to EPA1. Other parameters in order of correlation coefficient were EPA2, EPA3 and EPA4. In this example, EPA1 and PGA could better describe the response degree of soil slope in earthquake. The results are expected to provide a basis for the selection of seismic parameters in soil slope seismic stability evaluation

    State of health prediction of lithium-ion batteries based on machine learning: Advances and perspectives

    No full text
    Summary: Accurate state of health (SOH) prediction is significant to guarantee operation safety and avoid latent failures of lithium-ion batteries. With the development of communication and artificial intelligence technologies, a body of researches have been performed toward precise and reliable SOH prediction method based on machine learning (ML) techniques. In this paper, the conception of SOH is defined, and the state-of-the-art prediction methods are classified based on their primary implementation procedure. As an essential step in ML-based SOH algorithms, the health feature extraction methods reported in the literature are comprehensively surveyed. Next, an exhausted comparison is conducted to elaborate the development of ML-based SOH prediction techniques. Not only their advantages and disadvantages of the application in SOH prediction are reviewed but also their accuracy and execution process are fully discussed. Finally, pivotal challenges and corresponding research directions are provided for more reliable and high-fidelity SOH prediction
    corecore